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Frequency-dependent shear viscosity, sound velocity, and sound attenuation
near the critical point in liquids. Ill. The shear viscosity
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We compare theoretical results for the shear viscosity calculated in one-loop order within the field-
theoretical method of the renormalization-group theory with experiments. Our expressions describe the non-
asymptotic crossover in both temperature and density, and allow us to consider effects of finite gravitation and
finite frequency at which the experiments are performed. In doing so we treat the critical expgrugrthe
shear viscosity as an independent parameter, keeping the one-loop value of the Kawasaki amplitude fixed.
Within our model we also consider the temperature and density dependence of the thermal diffusion including
gravitational effects[S1063-651X99)11907-X

PACS numbg(s): 64.60.Ht, 05.70.Jk, 62.68v, 64.70.Fx

I. INTRODUCTION viation from the critical point T=T,, p=p., ®=0) is
found from the flow equation of the dynamic coupling and

This paper is the third part of an investigation of dynami-the experimental static correlation length. This temperature-
cal critical effects in pure fluidg1,2]. Its aim is to analyze and density-dependent correlation length is the most impor-
and predict the singular behavior of transport coefficientgant input in our theoretical expressions for the transport co-
induced by fluctuations near the gas-liquid critical point. Theefficients beside the dynamic constants.
theoretical results cover the whole region where these effects I paper Il we extracted the dynamical background pa-
are observed, and thus describe the crossover from the cofMeters from the shear viscosity, using strictly the one-loop

stant background values of the transport coefficients to th&XPressions, in particular for the dynamical critical exponent
asymptotic power laws resulting from the renormalization-X»- This was sufficient for predicting the temperature depen-

group (RG) invariance of the dynamical model & . Much dence of other transport coefficients, although we had to ex-

progress in this respect has also been made by other treﬂ—Ude the region very neaf. where gravitational effects

. S : , mask the true asymptotic behavior. But even without this
ments of this topic, in particular by the mode coupling theorygisturbance we would have expected deviations from the

(;or the dletlaestdand m?SOtI corr:jpletthe state60f;hls}theory, see Re ne-loop critical exponent. Several values have been calcu-
[3]) and the decoupled mode thed#-6]. So far many as- lated for the exponent,,, namely, 0.0548,9], 0.051[10],

pects have been considered only within this theoretical for01053[11], 0.065[11], 0.063[12], and 0.0413], and it was
mulation, e.g., the behavior away from the critical density..omarked earlief14,15 that an exact experimental determi-
Here we extend the RG calculations to cover this region alsqyation of the exponent turns out to be very difficult since the
and show that close to the critical point the expressions caly e asymptotic behavior is realized nowhere in the experi-
culated in RG theory lead to the same quality of agreemeniental region due to crossover and gravitational effects.
with experiments as the mode coupling results. This, howTaking this situation into account, we treat the dynamical
ever, is achieved, in our opinion, by much simpler expresexponent,, as an additional free parameter to be determined
sions, namely, the one-loop dynamical amplitude functionsy the shear viscosity close to the critical point.
calculated within the field theoretical method of the RG  Another important effect results from the finite frequency
theory. at which measurements of the shear viscosity are performed.
In order to describe dynamical crossover effects in pureat finite frequency the shear viscosity remains finiteTat
fluids, two dynamical parameters, the background value ofnd it is of interest if and under which circumstances these
one dynamical quantity and the renormalized dynamical coufrequency effects and gravitational effects can be discrimi-
pling, have to be taken from experiments. In fact only thenated. The frequency dependerit6,17] has already calcu-
last parameter is needed if the ratio of the transport coeffitated earlier within the decoupled mode theory.
cient to its nonsingular temperature and density-dependent
background value is considered rather than the transport cdt. TRANSPORT COEFFICIENTS AT ZERO FREQUENCY
efficient itself. We find a multiplicative enhancement not AND CRITICAL DENSITY
only for the shear viscosity where such a form has been
derived within the mode coupling theofy], but also for the
thermal diffusivity. This is a consequence of using the non
asymptotic expression for the Kawasaki amplitude.

In the preceding papef4,2] we have derived theoretical
expressions for the shear viscosity[Eq. (1.6.6)] and the
thermal diffusivity D+ [Eqg. (1.6.5.)] in one-loop order,

The deviation of the dynamical coupling from its fixed KaT £2(t

. , ; _ sl &(1) ¢ (1)
point value governs the nonasymptotic effects in the form nt)=—= — , (2.2
that the dependence of the transport coefficients on the de- 4 fr(HI(Y) 36
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f2(t) - T
DT<t>=§—Z<t>r<t>( 1- ‘1(6 , (2.2 °r ]

whereT is the temperaturég the Boltzmann constant, and

I" the Onsager coefficient corresponding to the heat mbde.
=(T—T.)/T. is the relative temperature distance, dpthe
mode coupling parameter between the order parameter fluc-
tuations and the transverse momentum density given by Eq.
(1.5.4). The temperature dependence of the mode coupling
and the Onsager coefficient is found solving the correspond-
ing one-loop order renormalization-group equatidisge
Egs. (1.4.36 and (1.4.40]. The flow parameter of the
renormalization-group equations is related to the correlation
length £(t), so that the solutions may be written as

24 &ty [ 24 -1
0
fcz,f(t) 18/19
F(t)=F0(2—> , (2.9 [ wl ol
fr(t)é(to) 0 e . e

with the initial conditionsI'(ty)=1"y and f(ty)=f, at an
_arbitrary temperature distande- to. _The exponent ol (t) FIG. 1. Nonasymptotic Kawasaki amplitude as functionXof
in Eq. (2.4) is the one-loop expression of-Ix,,. Therefore,  _ ./ ¢} calculated from Eqs(2.10 and (2.3) with the initial

we may replace the one-loop value by the general eXponent | es taken from Table IV of Ref2]. Note that the critical point

to obtain is approached if one goes to the right.

foct) |\ >

F(t)ZF()(m (2.5 _ fr(t)

i 0 . 36 foet) \*
instead of Eq(2.4), allowing the use of other than one loop (=70 2 | F2(1)&(to)
values in our expressions or to tregf as an additional free " 36
parameter which may be found from the limiting valuespf
reached in earthbound experimentsTat if the background =7noexdx,H (D], (2.9
values are known with sufficient accuracy. Changing the ex-
ponent consistently in all transport coefficierfige neglect f2(t)
the static exponeng) changes neither the fixed point value ) (1_ t_) ) y
of the mode coupling constant nor its temperature depen- D-(1)=D &(to) 16 foé(t) |\ ™
dence. In this way the nonasymptotic Kawasaki amplitude (=Do (1) f2 £2(t) £(to)
ratio R(t) remains unchanged, and reaches the fixed point (1— —)
value R* =1.056 [18] at T, which is in agreement with 16
experiments in®He [19,20. This consistency of the Ka- =Dy exgx,Hp(t)] 2.9

wasaki amplitude ratio is important, since we are then able to

keep the amplitude relation between the shear viscosity angith x, —1—x

the thermal diffusivity(or conductivity fixed at its(reason-
able one-loop value.

»- The reason why we can write the shear
viscosity and thermal diffusivity in multiplicative forms is
that we work from the beginning with the nonasymptotic

We may further simplify the expressions for the shearkawasaki amplitude given by

viscosity and the thermal diffusivity by writing Eq$2.1)
and (2.2) in a multiplicative form. Therefore, we introduce
the background constanig, andD at the temperature dis-
tancet,

__keT f(m)(l_ﬁ) 26

4w 12, | 36) '
%

Do=¢ A(to)To| 1= 75/, (2.7

so that the viscosity and the diffusivity read

67 .

Rineolt) = kB_TDT(t) n(t) (L)
_ 3 ( ff(t))( f?(t))
214 =56 )|t ) 210

rather than with its asymptotic valuR*. In Fig. 1 we
present the results of the nonasymptotic Kawasaki amplitude
as a function of¢(t)/&(ty) for various liquids. Equation
(2.10 can easily be generalizefby replacing &(t) by
&(t,Ap); see Sec. Il to noncritical values of the density so
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that the curves shown in Fig. 1 are generally valid for zero 12
frequency and zero gravity. We shall also note here that the
background valueD is already fixed by the background
value 7, of the shear viscosity,
10 |
keT 1 fa f2
Do=7p 1 2—( 1- —0) ( 1— —0) . @211
4 f5é(ty) 16 36
A multiplicative form such as Eq(2.8) was first calcu- 8T
lated within mode coupling theor}7], and was improved
later [3]. The crossover functioll introduced in the mode
coupling theory and now calculated by renormalization- < of
roup theory, <
group y S
fe()
MO 1I 36 ( fEE(t) ) (212 4
t)=—1In n , .
Xy s FE(DEto)
36
. . 2 B
has the proper limit4dd=0 att, and H~vInt. The same
limiting values are obtained fdf given by
fE(t) 0
1 1- 16 f2¢(1) 10° 10" 10 10° 10° 10° 10° 10
Hp(t)=—1In n(—)
° Xy f5 f2(t) &(to) X
- E FIG. 2. Comparison of the renormalization-group result for the
function H of Eg. (2.8) with the mode coupling result of Reff3]
2 &(tg) (see Fig. 3 thepe X is £(t)/&(tg) in renormalization-group theory,
x_l 0 (2.13  andqgpé(t) in mode coupling theory.
A

dependence of the correlation length does not follow the
H andHp, are not scaling functions, since they depend on theasymptotic power law in general, but may include correc-
nonuniversal background paramefgr. In Fig. 2 we com- tions to the leading terms in the crossover region. It would be
pare our expression fdi with the result of the mode cou- worthwhile to measure the explicit crossover temperature de-
pling theory[3]. Therefore, we ploH as function of the pendence of(t) in order to perform the analysis in the
dimensionless length(t)/£(t,), whereé(t,) is fixed so that  background properly. However, lacking more detailed ex-
the only free parameter is the initial value of the mode couferimental information we will use the asymptotic expres-
pling fo. In the mode coupling theory, howevét,is a func- ~ sion
tion of the dimensionless correlation length&(t) with one E()=£ot " (2.14)
free fit parametegp . There is another important difference o '
between the mode coupling theory and our result. In Eqwhich seems to be sufficient in the temperature region
(2.8 we use the background constapf, which is the value <10"! with respect to the uncertainties of other physical
of the shear viscosity dp once that the analytic background quantities entering the transport coefficients. The value of the
temperature dependence has been subtrésezdSec. VI for  universal critical exponent=0.63[12] has been confirmed
detail9 whereas in the mode coupling theory the full regularexperimentally for several liquid®2]. For the calculation of
background;™®9(T) is used instead of,. So Eqs(2.8) and  the shear viscosity, we thus need a knowledge of three non-
(2.9 only describe the purely singular part of the transportuniversal parameterg,, I'g, and f,. The amplitude of the
coefficients without any contribution of the temperature-correlation lengthé, has been determined experimentally for
dependent background. We mention here that the theoreticgkveral fluids, and is listed together with the critical tempera-
expression for the thermal conductivity=pCpD+ is 0b-  ture T, and the critical density,, in Table | for the liquids
tained from the diffusivity by multiplying with the densify  considered in the following. For a comprehensive overview
and the specific heat at constant pres€ige as discussed in  on experimental results in several other liquids, see R&l.
the preceding papd2]. We do not take the theoretical ex- and the references therein.
pression for the specific heat but its experimental counterpart

everywhere in our calculations. Ill. TRANSPORT COEFFICIENTS AT ZERO FREQUENCY
In order to proceed with our calculation of the transport AND NONCRITICAL DENSITY
coefficients all we need at this stage is the two initial values
I'y and f, the initial temperature, [21] and an explicit In order to extend our model to noncritical values of the

expression for the correlation leng#ift). The temperature density, we need an equation of state close to the critical
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TABLE I. Nonuniversal parameters of several fluids.

o T Pc Pe he
Liquid A) (K) (glcnT) (10 %g/cm $) (10~%cm) a k
*He 2.7 3.3086 0.0414 1.1678 0.116 4.05 0.818
‘He 2.0 5.1895 0.0696 2.2742 0.189 5.66 0.904
CoHg 1.9 305.33 0.2066 48.718 4.303 17.9 1.255
CcoO, 1.6 304.119 0.4664 73.753 3.047 18.9 1.273

point to find the correlation lengtl§ as a function of the

with an error of the order of 1% in the region considered. So

temperature and density. To do this we apply the cubicy, andDy may still be considered as the values of the shear
model discussed in the Appendix. The temperature- andiscosity and the thermal diffusivity at=ty, neglecting the

density-dependent shear viscosiyt,Ap) and thermal dif-
fusivity D1(t,Ap) are then obtained inserting the full corre-
lation length &(t,Ap) given by Eg.(A4) into Egs. (2.3,
(2.8, and(2.9),

12(t,Ap)
7(t,Ap)=1g 1_5 f2(t,Ap)&(to)
36
=700t Ap), 3.0
D-(t.Ap) =Dyt 10
THEPITE0 24 Ap)
( ff(t,Ap)>
e ( f86(t.Ap) )
X 2 2
- fo) 12(t,Ap)é(to)
16
=D, Ap), 332

whereAp is the reduced density defined in E&2). Let us
note here that, strictly speaking, the relatiops=7(ty) and

Do=D+(ty) are only correct along the critical isochore, but
if tg is chosen far enough away from the critical point where

we haveé(ty,Ap)=£&(tg), we find

L fto.Ap)
o Ap) =Ty ( fotto2) )XL%,
o\ Htodp)ito)
36
(3.3
£(to)

D Ap)=Dg—75—"—
7(to,Ap) 02ty Ap)

(1_ f?(to,Am)
16 ( f2¢(to,Ap) )
X 2 2
1_f_o) fr(tg,Ap)&(to)
16
~Dy, (3.9

regular density and temperature dependence. Thus our ex-
pressions for the transport coefficients have to be identified
with the experimental values after subtracting the regular
temperature- and density-dependent parts, and adding the
regular value afr; andp. (see Sec. VI

As the cubic model expression for the correlation length
(A4) is symmetric around the critical isochore, so are Egs.
(3.1 and(3.2), as they only describe the purely singular part
of the transport coefficients. On the other hand, we may in-
troduce density-dependent background valygéAp) and
Do(Ap) allowing a density dependence of the Onsager co-
efficientI"3(Ap) instead of correcting the experimental data
for their analytic density-dependent background. This depen-
dence is then fixed by the constraint that the background
value of the transport coefficient should coincide with the
background value of the experimental transport coefficient at
to,

A similar relation holds for the density-dependent back-
ground values of the transport coefficient. The theoretical
expression for the normalized transport coefficient are then
simply

7(t,Ap)

m—gn(t,AP). (3.9
D+(t,Ap)
m—go(t,Ap)- 3.7

IV. TRANSPORT COEFFICIENTS AT ZERO FREQUENCY
AND NONZERO GRAVITY

Now we look at a liquid enclosed in a vessel of fixed
heighth. In nonzero gravity we find a density gradient in the
liquid leading to a dependence of the correlation length, and
thus of the shear viscosity and the thermal diffusivity on the
vertical position in the vess¢R0]. In experiments one usu-
ally measures the average shear viscosity or the average ther-
mal diffusivity, but the way of averaging depends consider-
ably on the experimental technique, as will be explained
below.

The shear viscosity is usually measured in a vessel with
two rotating discs at the bottom and top. Therefore, the av-
erage shear viscosity simply consists of the contributions of
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the viscosity, or more precisely, the decrem@nt \7p at TABLE II. Universal parameters frorf24].
the bottom and the top. Adjusted to this experimental proce
dure, we define the average shear viscosjty along the @ B Y 6 v 7 b ¢
critical isochore a$20] 0.100 0.355 1.190 4.352 0.633 0.121 1.1446 0.0393
Tl )= (N77oppt N 71p0)? @)
a - . .
4pc where we have applied the universal exponents and cubic

o ) o model constants of Table Il. The critical height defined in
The above definition is only valid along the critical isochore e Appendix is listed in Table | for several liquids. Now we
and cannot be generalized to other isochores in a simple angy, insert Eq(4.5) into Eq. (3.1) obtain the values of the
straightforward way. The shear viscosity and the density afhear viscosity at the top and bottom which we finally insert
the bottom and at the top of the vessel at fixed temperaturejnio Eq. (4.1) together with the expression for the reduced
simply read 7p,=7(&(t)), m=7(&(1), po=pdl  density[Eq.(4.9)] to end up with the average shear viscosity
+App(1)], andp=p[1+Ap(t)]. The correlation lengths 7, " hich takes on a constant value. Origés known from
&b, and the reduced densitigs, at the bottom and top, g5 fit of the nonasymptotic shear viscosity, or even better from
which are both functions of the reduced temperature, can bg it of the thermal diffusivity, this constant value allows the
evaluated in terms of the cubic model as explained in thgetermination of the exponert, much more precisely than
Appendix. In experiments for the thermal diffusivity or the any fit in the asymptotic region. Unfortunately such experi-
thermal conductivity, we usually average over the wholemental data are not available at the moment, but we have

sample instead, so that the average thermal diffusDiy is o ertheless plotted,, /7, exactly at the critical point in

found to be *He as a function of,, for three different values df, in Fig.

3 to give the reader an impression of the functional depen-
dence. The sensitivity of the value of the shear viscogjty

on the gravitation is also observed in the mode coupling
theoretical analysis in Ref20]. Since the shear viscosity is
with Ap(z) the gravity-induced density profile the vertical ~ already divided by its background value, no static quantities
coordinate introduced in the Appendix amg and z,, re-  other than the correlation length enter into the comparison.
spectively, are the coordinates of the bottom and top of the

vessel, now functions of the reduced temperature and the T T T T T T
average reduced density. We shall note here that£#). is

Dy, (tAp)= f “DilétAp@)ldz (4.2

Z

valid for all values of the average reduced density and not 112 °He ‘
only for Ap=0 such as Eq(4.1). In the Appendix we de- | h-043mm g
scribe how to obtain the coordinates andz,, and how to

evaluate Eq(4.2) numerically. 111

Exactly at the critical point we are able to evaluate Eq.
(4.1) analytically using the cubic model expressions of the
Appendix: Along the critical isotherm the parameterand 6

of the cubic model read 1.10
L hlz U £
0=sgnz)- and r=|————5- 4.3 5
o2y he(b 1—b 3) “43 = 100
In addition, we know that along the critical isochore the ver-
tical position of the bottom and the top of the vessel is al- 108 L
ways given byz=*+1/2, so thatAp and &, given by Egs. )
(A2) and(A4), respectively, take on the constant values
A App=k(b™1+cb™3) h/2 " e
pt="App= +c 1 3
‘ he(b~1—b~3) e
Us 0.050 0.055 0.060 0.065 0.070
=1.102k —) : (4.9 %
he
FIG. 3. Saturation value of the normalized shear viscosity
h/2 —viBs Taw M0 Of 3He at the critical point under the influence of gravita-
E=Ep=£60(140.1077) ————— tion as a function of the the dynamical exponeuyt for various
he(b™*—b"%) initial valuesf, of the dynamic couplingthe height of the vessel is

(4.5 experiment the accuracy of the background values limits the accu-
racy ofx,,.

—UBs h=0.43mm, andt,=0.014). This shows that in an earthbound
=0.783§0(h—)
C
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V. FREQUENCY-DEPENDENT SHEAR VISCOSITY 1 &

In paper | of this seriegl] we also derived the theoretical ALAp,w)= 477Np Iftz(l)F(I){l+(Re+ Im)
expressions for the frequency-dependent shear viscagity
[Eq. (1.5.7)] and the frequency-dependent frictional coeffi- X[E((fe(D),o(1),w())]}, (5.2

cient 8[Eg. (1.5.8)]. Inserting the solution of the flow equa-
tion for the mode coupling [Eq. (11.2.7) in [2]] with « A5 pointed out by Bhattacharjee and FerfB] the quantity

=&, ' these expressions read measured in experiments is not the complex shear viscosity
k T £ but related to the frictional coefficient so that one has to take

Tt Ap, @)= — 2 [1+E(f(1),0(1),w())], the sum of the real and the ir'naginary' part of E§.1) in
 If (I)F(I) order to compare our results with experiments. The one-loop

(5.2 perturbational contribution is

E,(F,(1 w(l fz 146 02| (UZ‘| it
=-— +6|i—Inv+ —lny_——
(Fe(D),v (D), w(l)) [ nv v—v_\vs nv_ o nv,
4 vi—v3
_(v+—v,)3 3 + = (v+—v )(v+|nv++v Inv_)— (v+|nv+—v Inv_)
2 3 v 2 Uilnv+—v4|nv
+— —(1+4|nv+)+—(1+4|nv Y+ | —
( —U- ) U_ U+_U_ U_
1 2 v¥ Inv_—v*Inv
Tl —+t , (5.3
vy U4—U_ U

where we have dropped the argumeint the parameters on which can be solved numerically as the correlation length
the right hand side of the equation. The parameters intro(t,Ap) and the Onsager coefficieh{(l) are given by Egs.

duced in Eq(5.3 are defined as (A4) and Eq.(5.5), respectively. The initial valuk, is found
from Eq. (5.7) inserting&(ty) instead ofé(t,Ap).
E72(1) ® Before we come to gravitational effects let us introduce
v(h)= (&5 1)2" w(l,0)= 2 (1) (&5 1% an effective temperature distante which is a function of
0 0 the temperature distande the reduced densittp, and the
frequencyw, and is determined by the matching condition
vi(l,w)= %-'_- \/ (%) +iw. (5.4  via an effective correlation lengtfpt) = &gt ™"
The Onsager coefficierli(I) and the mode couplind,(1) ngg 2 B
now read 58<t,Ap>+( T ) = £5(1). (5.8

ra)y=ry

19f2 1, | [ 24 17
24 1|\ et - 69
0 0 The above equation allows the calculation of the correspond-

1 ing effective temperature distantdor each real temperature
, (5.6) distancet at finite frequency and density at which the values
of the model parameters have to be known. In Fig. 4 the
functiont(t), calculated by inversion of E@5.8) at fixed w,
whereT'y, fy, andl, are the initial values of the Onsager is shown for several frequencies along the critical isochore.
coefficientI’, the mode coupling,, and the flow parameter Approaching the critical temperature at finite frequencies,
|, all determined at=t, andAp=0. the effective temperature distantéecomes constant. Thus
The mode coupling parametkiis a function of the tem-  all static and dynamic parameters that are functions of the
peraturet, the densityAp and the frequency and results  flow parameter also turn into constant valueJ at A simi-
from the solution of the matching conditig&g. (1.5.28)], lar behavior oft is found at zero frequency when the density

. o differs from its critical value. With the solution(t,Ap, w) of
€0 2w¢, —|8 (5.7) Eqg. (5.8 the temperature and frequency parameters in Eq.
&(t,Ap) ra) ' (5.4) can be rewritten as

24
19

24
—|—=-1
|O 19f2

fu(l)=
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10" 1.25 bk B b | Ty
®He - no gravity  frequency:
3 t,=0.04 o= OHz 4
He f,=0.60 ©=10 Hz
- X, =119 =10 Hz
10k . o
1.20 0=10Hz ]|
©=10'Hz
w=10Hz J
10°F E
[ ] 1.15 -1
= 10" | e \:Q
=0 IS5
O — - 1.10 -1
10°F 9
1.05 -
e— ) HZ
10° koo, -—- 108Hz
E"""T/ e 10° Hz
=== 10" Hz
d 1.00 PETSTRRYTY] BN WY TTY| BRI AN Y T1| MWW R AT IT| T
g AT T A A R 10° 10° 10" 10° 107 10"
107 10 10° 10t 10° 107 107 t

FIG. 5. Shear viscosity irfHe along the critical isochore at

. . various frequencies without gravitation.
FIG. 4. Effective temperature distantg; vs real temperature q 9

differencet for He for various frequencies at zero gravity along the

critical isochore. guency effects withw<<1 kHz so that we can conclude that

in earthbound experiments frequency effects will hardly be
24 visible close to the critical point. Similar results for the
L, S w(h= w _ (5.9 frequency—depend_eqt shear viscosity in. zero gravity were al-
§_Z[t_] 21—~[t_]§—4[t_] ready obtained Wlthln the m_oc_ie coupling theddyr]. Qur
results for zero gravity but finite frequency agree with the
The situation is a bit more complicated when gravitationalCurves shown in Fig. 9 of Ref20] which were calculated
effects are no longer neglected: Like before in the limit ofWith the expressions derived in R¢L7]. Unfortunately, ex-
vanishing frequency and on the critical isochore, we find thg?€"imental data are not available in a large enough frequency
average shear viscosify, (t, ) inserting the local values of interval to compare them with our theoretical _results, so that
the frequency-dependent shear viscogiiyl) at the bottom W have to stick to the zero frequency case in Sec. VI.
and top into Eq(4.1). But now this means that we need the
flow parametel not only as a function of the temperature, VI. COMPARISON OF THE ZERO FREQUENCY
the density, and the frequency, but also of the vertical posi- TRANSPORT COEFFICIENTS WITH EXPERIMENTS
tion z (e.g., the bottom and tgpn the vessel. So in order to . .
evaluate the frequency dependence at nonzero gravity W% Before_ we dlsc_uss the results of the comparison (.)f our
insert the correlation lengtki(t, A p(2)) from the Appendix, theory with experiments, we shall describe how to fit the

and the Onsager coefficiefi(]), into the matching condi- initial values of the Onsager coefficiefit, and the mode
tion (5.8), which now reads ' couplingf, as well as the dynamic exponenj from experi-
o mental data for the shear viscosity and thermal diffusivity.

v(t,t_)=

¢ 8 (2wl Therefore, we have to discuss briefly the connection between
( 0 ) +( 0) =, (5.10  our theoretical results and experimental data for these two
£(t,Ap(2)) L) quantities:

_ ) ) ) ) As discussed in Secs. Il and lll, the experimental trans-
with the solutionl(t,Ap(2),») which we insert into Eq. port coefficients consist of a singular part and a regular back-
(5.1 to find the shear viscosityy,  at the bottom and top, ground part, both of them functions of the temperature and
respectively. With gravitation we may define an effectivegensity. As the temperature and density dependence of the
temperature distancgt,Ap(z),») analogously to Eq(5.8) background part is not described within the RG theory, one
at any positiore in the vessel. has to correct the experimental data for this dependence in

In Fig. 5 and 6 we plot the sum of the real and imaginaryorder to extend the region of fit into the region where the
parts of the shear viscosity at various frequencies with andegular temperature and density dependence sets in. This can
without gravitation inHe. There we see that even in a very be done in the following way: From a fit of the shear viscos-
small vessel of 0.1 mm, gravity effects cover up all fre-ity outside the critical region, one determines the regular part
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ore at various frequencies with gravitati¢the height of the cell is 10° 10° 10° 10° 10"
h=0.1mm). t

FIG. 7. Shear viscosity ifiHe (top) and“He (bottom) along the

| . critical isochore with gravitationfull curve: x,=0.058; dotted
mal diffusivity. Then we subtract the regular paftt,Ap) curve: x. = 0.063: dashged curvecr(=0 063 andfﬂo fitted from the
:x,=0. ; »=0.

re H H
or Dy g(t’Ap)’ respec-tlve!y, from the exefrlmental data, andthermal diffusivity) and without gravitation(dash-dotted curye
add the regular contribution™¥0,0) orD7TY0,0) exactly at  gyperimental data are from Ré0].
the critical point;

7Yt,Ap) of the shear viscosity andTt,Ap) of the ther-

—eorr _ —exp —re —re to infinity as only then the singular part completely vanishes.

7 (1, Ap) = 7Pt Ap) = 77*4t,Ap) + 77°40,0), (6.1 Practically, however, the choice depends on the region where
corr exp e e experimental data are available as well as on experimental
T(t,Ap)=DF*(t,Ap)—DFHt,Ap)+DFH0,0. (6.2  yncertainties21]. Oncet, is chosen, we can calculaks as

a function off 4 inverting Eq.(2.6). With the values of, and

Now the corrected experimental data correspond to our thq«o(fo) we can fitf, in the nonasymptotic region with,,

oretical expressiong andDy . In mode coupling theory the kept at its one-loop valug;. If possible it is better to move

procedure is somewhat different, since there the completgy i, e experimental data for the thermal diffusivity along
background value of the transport coefficient is subtractedt,he critical isochore for this fit of,, as the thermal diffu-

which means, for the shear viscosity, sivity depends only weakly on the exact valuexgf. With

— _ I'o(fg) and the set of parametetrgandfy, we return to the
= XpP _ e o\l'o 0
A7t Ap) =7t Ap) =77t Ap) data for the shear viscosity along the critical isochore and
=7""(t,Ap)—%"40,0 (6.3 finally fit the exponenk,, in the asymptotic region. There-

fore, it is advisable to use the expression for the average

(see Fig. 5 in Ref.3]). A similar expression can be found for shear viscosity4.1), as gravitational effects will have a sig-
the thermal diffusivityADt. Inserting the theoretical ex- nificant influence on the shape of the curve. The theoretical
pression forp®°"(t,Ap) leads to a singular contributiohz  results for the shear viscosity or thermal diffusivity along
which is symmetric inAp. This arises from the constant other isochores or isotherms then follow without any other
value of 774 in expression(3.1). Note that the mode coupling free parameter. We should note here that if only data for the
theory uses the full background valug®Y(t,Ap) instead of shear viscosity along the critical isochore are available a fit
79, SO that their expressions are not fully symmetricAin of both f, andx,, is not unerring, as; depends sensitively

Let us now come back to the fit procedure: We start withon both parameters. Only if the saturation value of the shear
the shear viscosity along the critical isochore, and chogse viscosity very close to the critical point is known from ex-
far away from the critical point whereg; is given by its  periments may we expre$g numerically in terms ok, so
background value once that the experimental data were cothat we can perform a one parameter fit along the critical
rected corresponding to E¢5.1). Theoreticallyt, should go  isochore.
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FIG. 8. Shear viscosity iffHe along various isotherms. Full
curves are fox,=0.058, and dotted curves far,=0.063. Experi- FIG. 9. Thermal diffusivity in®He along the critical isochore for
mental data are from Ref20]. x,=0.058 and 0.063 with gravitatioffull and dotted curvgand

without (dashed and dash-dotted curvExperimental data are ob-
tained from Ref[23] as explained in the text.

In Figs. 7-10 we compare the shear viscosity and thermal
diffusivity with experimental data ifHe and*He. We start good agreement in the critical region. In particular, we find
with the normalized shear viscosity/ 77, along the critical  the critical exponent,=0.058 somewhat larger than the
isochore, and compare our theoretical results w(fl value used in Ref[20], x,,=0.054, within the mode cou-
curve and without(dash-dotted curyegravitation with the  pling theoretical expressions for the shear viscosity taken
®He and“He data of Agostat al.[20] in Fig. 7, which can  from Ref.[26].

A. Comparison with 3He and “He

be compared with Fig. 13 of R€f20] where the experimen- Another procedure is to consider only the shear viscosity
tal data are compared with the results of the mode couplingor a fixed value of the universal exponent. We chogge
theory. Therefore, the parametdgsandx,, were fitted from  =0.063, the value taken in mode coupling thef8yfor the

the shear viscosity data, and féde also from the thermal fluids analyzed in Sec. VIB. Then another background value
diffusivity data along the critical isochore as explainedfor the mode coupling constafig is obtained together with
above. This leads to a value of the critical expongnpt perfect agreement of the shear viscosity with the experimen-
=0.058. tal data(the difference from the fit found above is hardly
In Fig. 8 we continue with a comparison of our theory for visible in Fig. 7. However, differences are seen in the pre-
the renormalized shear viscosity along various isothermsliction of the density dependence of the shear viscosity
with experimentaPfHe data of Ref[20]. A similar compari- along the isotherms shown in Fig.(8otted curvesand in
son of the®He data with the mode coupling theory is shown the thermal diffusivity along the critical isochofsee Fig. 9,
in Fig. 14 of Ref.[20]. Mind that the results for the density dotted and dash-dotted cujyes well as in the density de-
dependence, shown in Fig. 8, follow without any further freependence of the thermal diffusivitysee Fig. 10, dotted
parameter. In Figs. 9 and 10 we compare the normalizedurves. If instead we use the temperature-dependent thermal
thermal diffusivity D;/D along the critical isochore and conductivity at a critical density to fiky, and then apply the
along two isotherms with experimental data®pfe which we valuex,,=0.063 for the critical exponent in the shear viscos-
obtained by dividing the thermal conductivity data of Figs. 5ity, the theoretical shear viscosity deviates clearly from the
and 8 of Ref[23] by pC(t,Ap) taken from the cubic model the experimental datesee Fig. 7, dashed curve
[24] with background constants frof#5]. These experimen- The situation in“He is somewhat different froniHe,
tal data are corrected for the regular density dependence, bsince, lacking sufficient thermal conductivity data, we had to
contain the full temperature-dependent background given ifind the nonuniversal parameters from the shear viscosity
Ref. [23]. Therefore, to the theoretical res{iq. (3.2] we  alone. Therefore, we fixed the dynamical exponento the
have to add the temperature-dependent background terumalues found or fixed foPHe, and adjusted only the initial
DFYT)-DTYT.). From Figs. 7-10 we can conclude that, value for the mode couplin§, after choosing the appropri-
using the same set of constants for all figures, we find verpatety (the parameters found are listed in Tablg.llhs ex-
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FIG. 10. Thermal diffusivity in*He along two isotherms. Full FIG. 11. Shear viscosity in £lg along various isotherms. The
curves are fox,=0.058, and dotted curves far,=0.063. Experi-  plot contains our resultghick curves as well as experimental data
mental data are from Reff23]. [27] and theoretical results of the mode coupling thedityin

) ) dashed curves[3]. The curves were shifted by 5, 10, or 18,
pected no conclusion on therecise value of X, can be  yegpectively, for better clearness.
drawn. We finally remark here that the experimental shear
viscosity data were divided by the full background A ptheor _
. . o t,Ap)= t,Ap)—1], 6.4
7°Yt,Ap), whereas our theoretical expressions are divided 7 (LAP) =m0l 8,(t.AP) 1] €4

A\LAp), Where ; :
by 770,['h fSlnc? mﬂl}-!e ancti Het_the bac_kgrou?d.tl)f a r?hther which is symmetrical aroung., and indeed the experimen-
Smooth function this systematic error 1S negligibie In e 1€~ 4415 show almost the same symmetry. We see that for the

gions of temperatures and densities shown. shear viscosity, mode coupling theory and RG theory yield
the same quality of agreement in a surprisingly large region
B. Comparison with C;Hg and CO, of densities.

In Figs. 11-14 we finally compare our theoretical results For the thermal diffusivity, however, we are only able to
with the mode coupling theor{B] and experimental data of describe the experimental data correctly within a density and
CO, [27-29 and GHg [27,30] along various isotherms. We temperature interval ofAp|<0.2 and|[t|<0.01, respec-
take the same value,=0.063 for the critical exponent that tively, whereas the mode coupling theory covers a larger
has been used in mode coupling thedsmaller values density and temperature range. The reason might be the fol-
showed less overall agreement with the data in OU)', fits IOWing: Since we compare with the full eXperimentaI value
the other parameters see Table Ill. In Figs. 11 and 13 théf the thermal diffusiorD but only the background values

singular partA 7 of the experimental data is plotted, which is Of the thermal conductivity are known, we need the specific
identified with its theoretical counterpart heat at a constant pressure, which we take from the cubic
model[24] with background constants from R¢81]. Then
TABLE Ill. Initial values of the Onsager coefficieliy and the  the experimental thermal diffusion is calculated from
mode couplingf, att, and value of the critical exponent,. For

®He and’He, I’y and f, are given forx,=0.058 and 0.063. re re
DEeOlt, A p) = DE(1, A p) + AP <00
Liquid to I'ox 104(cmfs) fo X, pCp(t,Ap) PCp<LAP(>6 5
*He 0.014 2.69 0.565 0.058
“He 0.050 0.80 0.508 0.058  The specific heat expression we use is restricted to not too
*He 0.014 3.18 0.520 0.063 large values ot and Ap. Moreover, we use the asymptotic
“He 0.050 1.00 0.456 0.063  expression for the correlation length, which also breaks
CHg 0.100 6.20 0.576 0.063  down in the background and leads to values of the thermal
Co, 1.000 2.69 0.251 0.063  conductivity which are higher than the expected val(se®,

e.g., Fig. 8 in Ref[2] for the deviation in°He). In fact the
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FIG. 12. Thermal diffusivity in GHg along various isotherms. FIG. 13. Shear viscosity in CQalong various isotherms. The

The plot contains our resultshick curves as well as experimental plot contains our result&hick curves as well as experimental data
data[30] and theoretical results of the mode coupling thegthin ~ [27] and theoretical results of the mode coupling thedityin
curves [3]. We have used the analytic background expressions ofurves [3].

Ref.[36].

values which are more near the two loop vabug=0.065
correlation length is expected to saturate at some micror11] or even highef14,15 but in good agreement with other
scopic background value leading to temperature independegkperimental fits irHe and*He [20]. In this paper we have
background values for the dynamic parametisse Egs. pointed out that the value of the exponentcan be deter-
(2.3 and (2.4)]. In the mode coupling calculations this is mined from the saturation value of the shear viscosity ex-
taken into account relating the correlation length to the susactly at the critical point under the influence of gravitation

ceptibility [see Eqs(4.31) and (4.32 in Ref. [3]]. when the parametef, is taken from a fit of either the ther-
mal diffusivity or that part of the data not influenced by
VIl. CONCLUSION gravity. Note added in proof: Recently the shear viscosity of

xenon has been measured in a low gravity experimi@8k

We have derived expressions for transport coefficientdhe divergence is characterized by a critical exponepnt
such as the shear viscosity and the thermal diffusivity within=0.069+ 0.0006, which was found from fits within the re-
the field-theoretical method of the RG theory in one-loopgion 10 ®<t<10 4. This result favors the two loop value
order including the complex expression for the shear viscosfor the exponent of the shear viscosity mentioned1igy.
ity at finite frequency. As the flow parameter is a function of
the correlation length only, we can include gravitational ef-
fects in full analogy to statics, so that we are able to describe ACKNOWLEDGMENTS
the shear viscosity completely with only two free parameters,

namely, the initial values of the Onsager coefficient and the We thank.H. Meyer for helpful discussions and.for send-
mode coupling. In addition we may treat the exporept ing us experimental data, and R. F. Berg for sending us Ref.

which is given byz-+x,=18/19~0.053 in one-loop order, [38] prior to publication. This work was supported by the

as an additional parameter correcting our one-loop cross,ovc%:{omlj:l)S zur l'—‘l\tlnleg£g4g;rTvI\gsHsenschaftllchen Forschung un-
function for I'(t) for the true asymptotic behavior in the er Project No. ) '
solution of the flow equatio2.4). Note that we effectively
use the scaling lawy+x,+x, =1, with =0, when we in-
sertI’(t) into the thermal conductivity. However, this proce-
dure keeps the theoretical expression for the Kawasaki am- The cubic mode[32], an extension of the linear model
plitude and its asymptotic one-loop val& =1.056. introduced by Schofielf33], is an equation of state close to
Fitting the exponenx,, from experiments foPHe we ob-  the critical point involving nonclassical critical exponents.
tain the value 0.058 which is lower than other experimentallhe reduced temperatute the reduced densitgp, and the

APPENDIX: CUBIC MODEL
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T " T " T " T " The treatment of gravitational effects is in full analogy to
statics, where it has been performed in detail by Hohenberg
and BarmatZ 35] within the linear model, and the extension
in terms of the cubic model is straightforward so that we
only mention the most important steps: Gravity enters the
equation of state in terms of the chemical potential,

du=—gdz (A5)

whereg is the gravitational constant aricthe vertical coor-
dinate in the vessel. Introducing the dimensionless vertical
coordinatez=2/h, whereh is the height of the vessel, and
choosing the origin ot along the coexistence line, we may
integrate Eq(A5) to obtain

Au=—ghz (AB)

Inserting Eq.(A3) for the reduced chemical potential, Eq.
(A6) may be inverted to obtain

10°4"

0 3043 K
v 3052 K
0 3078 K
+3043K 1 z=—0,(0— 6°)rP=—g,tP%(9— 63)(1—b?6?) £,

x 3052K ] (A7)
£ 307K

where g;=(aP.)/(p,gh)=h./h involves the constant
“critical height” h, also given in Table I. Since we have
chosen the origin of along the coexistence line, the phase
transition always occurs a&=0 in our model, whereas the
coordinates of the bottom and the top are functions of the
10° p [g/em’] temperature and the average density given by

T T T T T T T
200 400 600 800

FIG. 14. Thermal diffusivity in C@ along various isotherms. — ) b2 dz

The plot contains our resultshick curves as well as experimental Ap= Jz Ap(t,z)dz= L Ap(t,0) de do. (A8)

data[28,29 and theoretical results of the mode coupling theory ! ! t

(thin curves [3]. We have used the analytic background expres-Herez, andz,=z,+ 1 are the coordinates of the bottom and

sions of Ref[3] for the density dependence, and of H&f7] forthe  top of the vesselin our units the height of the vessel is

temperature dependence. unity), and #; and 6, the corresponding values of the cubic
model variabled, which can be found from EqA7). Equa-

reduced chemical potentialu are expressed in terms of new tion (A8) may then be inverted numerically to obtain and

variablesr and , 6, as a function of the reduced temperature and the average
reduced density. Along the critical isochore, however, the
t= T = (1—b26%)r (A1) situation becomes much easier as the coordinates of the bot-
T, ' tom and top are then always given by,= = 1/2 which we

simply insert into Eq(A7) to obtaing, andd,. Onceé, and

P~ Pc 3. B 0, have been found we can insert these values into(&2)

Ap= i =k(6+co)r”, (A2)  and Eq.(A4) to obtain the reduced density and the correla-
tion length at the bottorfA p,(t,Ap)=Ap(t, 1), §,(t,Ap)
L =£(t,6)] and at the tofi Ap((t,Ap)=Ap(1,0,), &(t.Ap)
Ap= P./pe =a(6—6°)r"", (A3)  —&(t,0,)] of the vessel which we need for E¢h1). The

integral for the average thermal diffusivit¢.2) can now be
whereuo(T) is the chemical potential along the critical iso- Written as
chore, which is assumed to be an analytic function of the

temperature. The correlation lengthis now given by the Dt (t,A_p)=JZZDT[g(t,Ap(z))]dz
heuristic expressiof24,34 a 7
£=Eo(1+0.1662)r = £t~ "(1+0.166)(1— b262)". =f02DT(§(t 9))(§) 40 (A9)
(A4) 01 ' 06 !

Hence Egs(Al) and (A2) can be inverted numerically to and may easily be integrated. To end this section let us note
obtain the correlation length as a function of the reducedhat we need an analytic expression for the specific heat at
temperature and the reduced density. We use the restricteginstant pressur€p(t,Ap) in terms of the cubic model in
cubic model[32] where the parametets=3/(3—28) and order to evaluate the thermal conductivitg(t,Ap)
c=(2B6—3)/(3—2p) are connected to the universal criti- =pCpD+(t,Ap). Such an expression can be found, e.g., in
cal exponents of Table IlI, so that the nonuniversality enterfkef. [24], and the background constants entering theses
Egs.(A1)—(A4) only via the constant parametersk and &, equations are taken from RdR5] for *He and from Ref.
given in Table 1. [31] for CO, and GHs.
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