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Frequency-dependent shear viscosity, sound velocity, and sound attenuation
near the critical point in liquids. III. The shear viscosity

G. Flossmann,1 R. Folk,1 and G. Moser2
1Institute for Theoretical Physics, University of Linz, Linz, Austria

2Institute for Physics and Biophysics, University of Salzburg, Salzburg, Austria
~Received 24 September 1998!

We compare theoretical results for the shear viscosity calculated in one-loop order within the field-
theoretical method of the renormalization-group theory with experiments. Our expressions describe the non-
asymptotic crossover in both temperature and density, and allow us to consider effects of finite gravitation and
finite frequency at which the experiments are performed. In doing so we treat the critical exponentxh of the
shear viscosity as an independent parameter, keeping the one-loop value of the Kawasaki amplitude fixed.
Within our model we also consider the temperature and density dependence of the thermal diffusion including
gravitational effects.@S1063-651X~99!11907-X#

PACS number~s!: 64.60.Ht, 05.70.Jk, 62.60.1v, 64.70.Fx
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I. INTRODUCTION

This paper is the third part of an investigation of dynam
cal critical effects in pure fluids@1,2#. Its aim is to analyze
and predict the singular behavior of transport coefficie
induced by fluctuations near the gas-liquid critical point. T
theoretical results cover the whole region where these eff
are observed, and thus describe the crossover from the
stant background values of the transport coefficients to
asymptotic power laws resulting from the renormalizatio
group~RG! invariance of the dynamical model atTc . Much
progress in this respect has also been made by other t
ments of this topic, in particular by the mode coupling theo
~for the latest and most complete state of this theory, see
@3#! and the decoupled mode theory@4–6#. So far many as-
pects have been considered only within this theoretical
mulation, e.g., the behavior away from the critical dens
Here we extend the RG calculations to cover this region a
and show that close to the critical point the expressions
culated in RG theory lead to the same quality of agreem
with experiments as the mode coupling results. This, ho
ever, is achieved, in our opinion, by much simpler expr
sions, namely, the one-loop dynamical amplitude functio
calculated within the field theoretical method of the R
theory.

In order to describe dynamical crossover effects in p
fluids, two dynamical parameters, the background value
one dynamical quantity and the renormalized dynamical c
pling, have to be taken from experiments. In fact only t
last parameter is needed if the ratio of the transport coe
cient to its nonsingular temperature and density-depen
background value is considered rather than the transpor
efficient itself. We find a multiplicative enhancement n
only for the shear viscosity where such a form has b
derived within the mode coupling theory@7#, but also for the
thermal diffusivity. This is a consequence of using the no
asymptotic expression for the Kawasaki amplitude.

The deviation of the dynamical coupling from its fixe
point value governs the nonasymptotic effects in the fo
that the dependence of the transport coefficients on the
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viation from the critical point (T5Tc , r5rc , v50) is
found from the flow equation of the dynamic coupling a
the experimental static correlation length. This temperatu
and density-dependent correlation length is the most imp
tant input in our theoretical expressions for the transport
efficients beside the dynamic constants.

In paper II we extracted the dynamical background p
rameters from the shear viscosity, using strictly the one-lo
expressions, in particular for the dynamical critical expon
xh . This was sufficient for predicting the temperature dep
dence of other transport coefficients, although we had to
clude the region very nearTc where gravitational effects
mask the true asymptotic behavior. But even without t
disturbance we would have expected deviations from
one-loop critical exponent. Several values have been ca
lated for the exponentxh , namely, 0.054@8,9#, 0.051@10#,
0.053@11#, 0.065@11#, 0.063@12#, and 0.04@13#, and it was
remarked earlier@14,15# that an exact experimental determ
nation of the exponent turns out to be very difficult since t
true asymptotic behavior is realized nowhere in the exp
mental region due to crossover and gravitational effe
Taking this situation into account, we treat the dynami
exponentxh as an additional free parameter to be determin
by the shear viscosity close to the critical point.

Another important effect results from the finite frequen
at which measurements of the shear viscosity are perform
At finite frequency the shear viscosity remains finite atTc ,
and it is of interest if and under which circumstances th
frequency effects and gravitational effects can be discri
nated. The frequency dependence@16,17# has already calcu-
lated earlier within the decoupled mode theory.

II. TRANSPORT COEFFICIENTS AT ZERO FREQUENCY
AND CRITICAL DENSITY

In the preceding papers@1,2# we have derived theoretica
expressions for the shear viscosityh̄ @Eq. ~I.6.6!# and the
thermal diffusivityDT @Eq. ~I.6.5.!# in one-loop order,

h̄~ t !5
kBT

4p

j~ t !

f t
2~ t !G~ t !

S 12
f t

2~ t !

36
D , ~2.1!
779 ©1999 The American Physical Society
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780 PRE 60G. FLOSSMANN, R. FOLK, AND G. MOSER
DT~ t !5j22~ t !G~ t !S 12
f t

2~ t !

16 D , ~2.2!

whereT is the temperature,kB the Boltzmann constant, an
G the Onsager coefficient corresponding to the heat modt
5(T2Tc)/Tc is the relative temperature distance, andf t the
mode coupling parameter between the order parameter
tuations and the transverse momentum density given by
~I.5.4!. The temperature dependence of the mode coup
and the Onsager coefficient is found solving the correspo
ing one-loop order renormalization-group equations@see
Eqs. ~I.4.36! and ~I.4.40!#. The flow parameter of the
renormalization-group equations is related to the correla
lengthj(t), so that the solutions may be written as

f t
2~ t !5

24

19F11
j~ t0!

j~ t ! S 24

19f 0
2 21D G21

, ~2.3!

G~ t !5G0S f 0
2j~ t !

f t
2~ t !j~ t0!

D 18/19

, ~2.4!

with the initial conditionsG(t0)5G0 and f t(t0)5 f 0 at an
arbitrary temperature distancet5t0 . The exponent ofG(t)
in Eq. ~2.4! is the one-loop expression of 12xh . Therefore,
we may replace the one-loop value by the general expo
to obtain

G~ t !5G0S f 0
2j~ t !

f t
2~ t !j~ t0!

D 12xh

~2.5!

instead of Eq.~2.4!, allowing the use of other than one loo
values in our expressions or to treatxh as an additional free
parameter which may be found from the limiting value ofh̄
reached in earthbound experiments atTc , if the background
values are known with sufficient accuracy. Changing the
ponent consistently in all transport coefficients~we neglect
the static exponenth! changes neither the fixed point valu
of the mode coupling constant nor its temperature dep
dence. In this way the nonasymptotic Kawasaki amplitu
ratio R(t) remains unchanged, and reaches the fixed p
value R* 51.056 @18# at Tc , which is in agreement with
experiments in3He @19,20#. This consistency of the Ka
wasaki amplitude ratio is important, since we are then abl
keep the amplitude relation between the shear viscosity
the thermal diffusivity~or conductivity! fixed at its~reason-
able! one-loop value.

We may further simplify the expressions for the she
viscosity and the thermal diffusivity by writing Eqs.~2.1!
and ~2.2! in a multiplicative form. Therefore, we introduc
the background constantsh̄0 andD0 at the temperature dis
tancet0 ,

h̄05
kBT

4p

j~ t0!

f 0
2G0

S 12
f 0

2

36
D , ~2.6!

D05j22~ t0!G0S 12
f 0

2

16
D , ~2.7!

so that the viscosity and the diffusivity read
.

c-
q.
g

d-

n

nt

-

n-
e
nt

to
nd

r

h̄~ t !5h̄0

12
f t

2~ t !

36

12
f 0

2

36

S f 0
2j~ t !

f t
2~ t !j~ t0!

D xh

[h̄0 exp@xhH~ t !#, ~2.8!

DT~ t !5D0

j2~ t0!

j2~ t !

S 12
f t

2~ t !

16
D

S 12
f 0

2

16
D S f 0

2j~ t !

f t
2~ t !j~ t0!

D xl

[D0 exp@xlHD~ t !#, ~2.9!

with xl512xh . The reason why we can write the she
viscosity and thermal diffusivity in multiplicative forms i
that we work from the beginning with the nonasympto
Kawasaki amplitude given by

Rtheor~ t !5
6p

kBT
DT~ t !h̄~ t !j~ t !

5
3

2 f t
2~ t !

S 12
f t

2~ t !

36
D S 12

f t
2~ t !

16
D ~2.10!

rather than with its asymptotic valueR* . In Fig. 1 we
present the results of the nonasymptotic Kawasaki amplit
as a function ofj(t)/j(t0) for various liquids. Equation
~2.10! can easily be generalized@by replacing j(t) by
j(t,Dr); see Sec. III# to noncritical values of the density s

FIG. 1. Nonasymptotic Kawasaki amplitude as function ofX
5j(t)/j(t0) calculated from Eqs.~2.10! and ~2.3! with the initial
values taken from Table IV of Ref.@2#. Note that the critical point
is approached if one goes to the right.
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PRE 60 781FREQUENCY-DEPENDENT SHEAR . . . . III. . . .
that the curves shown in Fig. 1 are generally valid for ze
frequency and zero gravity. We shall also note here that
background valueD0 is already fixed by the backgroun
value h̄0 of the shear viscosity,

D05h̄0
21

kBT

4p

1

f 0
2j~ t0!

S 12
f 0

2

16
D S 12

f 0
2

36
D . ~2.11!

A multiplicative form such as Eq.~2.8! was first calcu-
lated within mode coupling theory@7#, and was improved
later @3#. The crossover functionH introduced in the mode
coupling theory and now calculated by renormalizatio
group theory,

H~ t !5
1

xh
lnS 12

f t
2~ t !

36

12
f 0

2

36

D 1 lnS f 0
2j~ t !

f t
2~ t !j~ t0!

D , ~2.12!

has the proper limitsH50 at t0 and H;n ln t. The same
limiting values are obtained forHD given by

HD~ t !5
1

xl

lnS 12
f t

2~ t !

16

12
f 0

2

16

D 1 lnS f 0
2j~ t !

f t
2~ t !j~ t0!

D
1

2

xl

lnS j~ t0!

j~ t !
D . ~2.13!

H andHD are not scaling functions, since they depend on
nonuniversal background parameterf 0 . In Fig. 2 we com-
pare our expression forH with the result of the mode cou
pling theory @3#. Therefore, we plotH as function of the
dimensionless lengthj(t)/j(t0), wherej(t0) is fixed so that
the only free parameter is the initial value of the mode c
pling f 0 . In the mode coupling theory, however,H is a func-
tion of the dimensionless correlation lengthqDj(t) with one
free fit parameterqD . There is another important differenc
between the mode coupling theory and our result. In
~2.8! we use the background constanth̄0 , which is the value
of the shear viscosity att0 once that the analytic backgroun
temperature dependence has been subtracted~see Sec. VI for
details! whereas in the mode coupling theory the full regu
backgroundh̄ reg(T) is used instead ofh̄0 . So Eqs.~2.8! and
~2.9! only describe the purely singular part of the transp
coefficients without any contribution of the temperatu
dependent background. We mention here that the theore
expression for the thermal conductivitykT5rCPDT is ob-
tained from the diffusivity by multiplying with the densityr
and the specific heat at constant pressureCP , as discussed in
the preceding paper@2#. We do not take the theoretical ex
pression for the specific heat but its experimental counter
everywhere in our calculations.

In order to proceed with our calculation of the transp
coefficients all we need at this stage is the two initial valu
G0 and f 0 , the initial temperaturet0 @21# and an explicit
expression for the correlation lengthj(t). The temperature
o
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dependence of the correlation length does not follow
asymptotic power law in general, but may include corre
tions to the leading terms in the crossover region. It would
worthwhile to measure the explicit crossover temperature
pendence ofj(t) in order to perform the analysis in th
background properly. However, lacking more detailed e
perimental information we will use the asymptotic expre
sion

j~ t !5j0t2n, ~2.14!

which seems to be sufficient in the temperature regiot
<1021 with respect to the uncertainties of other physic
quantities entering the transport coefficients. The value of
universal critical exponentn50.63 @12# has been confirmed
experimentally for several liquids@22#. For the calculation of
the shear viscosity, we thus need a knowledge of three n
universal parametersj0 , G0 , and f 0 . The amplitude of the
correlation lengthj0 has been determined experimentally f
several fluids, and is listed together with the critical tempe
ture Tc and the critical densityrc in Table I for the liquids
considered in the following. For a comprehensive overvi
on experimental results in several other liquids, see Ref.@22#
and the references therein.

III. TRANSPORT COEFFICIENTS AT ZERO FREQUENCY
AND NONCRITICAL DENSITY

In order to extend our model to noncritical values of t
density, we need an equation of state close to the crit

FIG. 2. Comparison of the renormalization-group result for t
function H of Eq. ~2.8! with the mode coupling result of Ref.@3#
~see Fig. 3 there!: X is j(t)/j(t0) in renormalization-group theory
andqDj(t) in mode coupling theory.
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TABLE I. Nonuniversal parameters of several fluids.

Liquid
j0

~Å!
Tc

~K!
rc

~g/cm3!
Pc

(1026g/cm s2)
hc

(1026 cm) a k

3He 2.7 3.3086 0.0414 1.1678 0.116 4.05 0.8
4He 2.0 5.1895 0.0696 2.2742 0.189 5.66 0.9

C2H6 1.9 305.33 0.2066 48.718 4.303 17.9 1.2
CO2 1.6 304.119 0.4664 73.753 3.047 18.9 1.2
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point to find the correlation lengthj as a function of the
temperature and density. To do this we apply the cu
model discussed in the Appendix. The temperature-
density-dependent shear viscosityh̄(t,Dr) and thermal dif-
fusivity DT(t,Dr) are then obtained inserting the full corr
lation length j(t,Dr) given by Eq. ~A4! into Eqs. ~2.3!,
~2.8!, and~2.9!,

h̄~ t,Dr!5h̄0

12
f t

2~ t,Dr!

36

12
f 0

2

36

S f 0
2j~ t,Dr!

f t
2~ t,Dr!j~ t0!

D xh

[h̄0gh~ t,Dr!, ~3.1!

DT~ t,Dr!5D0

j2~ t0!

j2~ t,Dr!

3

S 12
f t

2~ t,Dr!

16
D

S 12
f 0

2

16
D S f 0

2j~ t,Dr!

f t
2~ t,Dr!j~ t0!

D xl

[D0gD~ t,Dr!, ~3.2!

whereDr is the reduced density defined in Eq.~A2!. Let us
note here that, strictly speaking, the relationsh̄05h̄(t0) and
D05DT(t0) are only correct along the critical isochore, b
if t0 is chosen far enough away from the critical point whe
we havej(t0 ,Dr).j(t0), we find

h̄~ t0 ,Dr!5h̄0

12
f t

2~ t0 ,Dr!

36

12
f 0

2

36

S f 0
2j~ t0 ,Dr!

f t
2~ t0 ,Dr!j~ t0!

D xh

'h̄0 ,

~3.3!

DT~ t0 ,Dr!5D0

j2~ t0!

j2~ t0 ,Dr!

3

S 12
f t

2~ t0 ,Dr!

16
D

S 12
f 0

2

16
D S f 0

2j~ t0 ,Dr!

f t
2~ t0 ,Dr!j~ t0!

D xl

'D0 , ~3.4!
ic
d

with an error of the order of 1% in the region considered.
h̄0 andD0 may still be considered as the values of the sh
viscosity and the thermal diffusivity att5t0 , neglecting the
regular density and temperature dependence. Thus our
pressions for the transport coefficients have to be identi
with the experimental values after subtracting the regu
temperature- and density-dependent parts, and adding
regular value atTc andrc ~see Sec. VI!.

As the cubic model expression for the correlation leng
~A4! is symmetric around the critical isochore, so are E
~3.1! and~3.2!, as they only describe the purely singular pa
of the transport coefficients. On the other hand, we may
troduce density-dependent background valuesh̄0(Dr) and
D0(Dr) allowing a density dependence of the Onsager
efficient G0(Dr) instead of correcting the experimental da
for their analytic density-dependent background. This dep
dence is then fixed by the constraint that the backgro
value of the transport coefficient should coincide with t
background value of the experimental transport coefficien
t0 ,

G0~Dr!.
kBT

4p

j~ t0!

f 0
2h̄expt~ t0 ,Dr!

S 12
f 0

2

36
D . ~3.5!

A similar relation holds for the density-dependent bac
ground values of the transport coefficient. The theoreti
expression for the normalized transport coefficient are t
simply

h̄~ t,Dr!

h̄~ t0 ,Dr!
5gh~ t,Dr!, ~3.6!

DT~ t,Dr!

DT~ t0 ,Dr!
5gD~ t,Dr!. ~3.7!

IV. TRANSPORT COEFFICIENTS AT ZERO FREQUENCY
AND NONZERO GRAVITY

Now we look at a liquid enclosed in a vessel of fixe
heighth. In nonzero gravity we find a density gradient in th
liquid leading to a dependence of the correlation length, a
thus of the shear viscosity and the thermal diffusivity on t
vertical position in the vessel@20#. In experiments one usu
ally measures the average shear viscosity or the average
mal diffusivity, but the way of averaging depends consid
ably on the experimental technique, as will be explain
below.

The shear viscosity is usually measured in a vessel w
two rotating discs at the bottom and top. Therefore, the
erage shear viscosity simply consists of the contributions
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the viscosity, or more precisely, the decrementD}Ahr at
the bottom and the top. Adjusted to this experimental pro
dure, we define the average shear viscosityh̄av along the
critical isochore as@20#

h̄av~ t !5
~Ah̄brb1Ah̄ tr t!

2

4rc
. ~4.1!

The above definition is only valid along the critical isocho
and cannot be generalized to other isochores in a simple
straightforward way. The shear viscosity and the density
the bottom and at the top of the vessel at fixed temperatut
simply read h̄b5h̄„jb(t)…, h̄ t5h̄„j t(t)…, rb5rc@1
1Drb(t)#, andr t5rc@11Dr t(t)#. The correlation lengths
jb,t and the reduced densitiesrb,t at the bottom and top
which are both functions of the reduced temperature, can
evaluated in terms of the cubic model as explained in
Appendix. In experiments for the thermal diffusivity or th
thermal conductivity, we usually average over the wh
sample instead, so that the average thermal diffusivityDTav

is
found to be

DTav
~ t,Dr!5E

z1

z2
DT@j„t,Dr~z!…#dz, ~4.2!

with Dr(z) the gravity-induced density profile,z the vertical
coordinate introduced in the Appendix andz1 and z2 , re-
spectively, are the coordinates of the bottom and top of
vessel, now functions of the reduced temperature and
average reduced density. We shall note here that Eq.~4.2! is
valid for all values of the average reduced density and
only for Dr50 such as Eq.~4.1!. In the Appendix we de-
scribe how to obtain the coordinatesz1 andz2 , and how to
evaluate Eq.~4.2! numerically.

Exactly at the critical point we are able to evaluate E
~4.1! analytically using the cubic model expressions of t
Appendix: Along the critical isotherm the parametersr andu
of the cubic model read

u5sgn~z!
1

b
and r 5F huzu

hc~b212b23!
G1/bd

. ~4.3!

In addition, we know that along the critical isochore the v
tical position of the bottom and the top of the vessel is
ways given byz561/2, so thatDr and j, given by Eqs.
~A2! and ~A4!, respectively, take on the constant values

Dr t52Drb5k~b211cb23!F h/2

hc~b212b23!
G 1/d

51.102kS h

hc
D 1/d

, ~4.4!

j t5jb5j0~110.16b22!F h/2

hc~b212b23!
G2n/bd

50.783j0S h

hc
D2n/bd

, ~4.5!
-
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at

be
e

e

e
he

t

.

-
-

where we have applied the universal exponents and c
model constants of Table II. The critical heighthc defined in
the Appendix is listed in Table I for several liquids. Now w
can insert Eq.~4.5! into Eq. ~3.1! obtain the values of the
shear viscosity at the top and bottom which we finally ins
into Eq. ~4.1! together with the expression for the reduc
density@Eq. ~4.4!# to end up with the average shear viscos
h̄av, which takes on a constant value. Oncef 0 is known from
a fit of the nonasymptotic shear viscosity, or even better fr
a fit of the thermal diffusivity, this constant value allows th
determination of the exponentxh much more precisely than
any fit in the asymptotic region. Unfortunately such expe
mental data are not available at the moment, but we h
nevertheless plottedh̄av/h̄0 exactly at the critical point in
3He as a function ofxh for three different values off 0 in Fig.
3 to give the reader an impression of the functional dep
dence. The sensitivity of the value of the shear viscosityTc
on the gravitation is also observed in the mode coupl
theoretical analysis in Ref.@20#. Since the shear viscosity i
already divided by its background value, no static quantit
other than the correlation length enter into the compariso

TABLE II. Universal parameters from@24#.

a b g d n h b c

0.100 0.355 1.190 4.352 0.633 0.121 1.1446 0.03

FIG. 3. Saturation value of the normalized shear viscos
h̄av /h̄0 of 3He at the critical point under the influence of gravit
tion as a function of the the dynamical exponentxh for various
initial valuesf 0 of the dynamic coupling~the height of the vessel is
h50.43 mm, andt050.014). This shows that in an earthboun
experiment the accuracy of the background values limits the a
racy of xh .
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V. FREQUENCY-DEPENDENT SHEAR VISCOSITY

In paper I of this series@1# we also derived the theoretica
expressions for the frequency-dependent shear viscosih̄
@Eq. ~I.5.7.!# and the frequency-dependent frictional coef
cientb @Eq. ~I.5.8.!#. Inserting the solution of the flow equa
tion for the mode couplingg @Eq. ~II.2.7! in @2## with k
5j0

21 these expressions read

h̄~ t,Dr,v!5
kBT

4p

j0

l f t
2~ l !G~ l !

@11Et„f t~ l !,v~ l !,w~ l !…#,

~5.1!
tr

r
r

b~ t,Dr,v!'
1

4pNA

j0

l f t
2~ l !G~ l !

$11~Re1Im!

3@Et„f t~ l !,v~ l !,w~ l !…#%, ~5.2!

As pointed out by Bhattacharjee and Ferrell@16# the quantity
measured in experiments is not the complex shear visco
but related to the frictional coefficient so that one has to ta
the sum of the real and the imaginary part of Eq.~5.1! in
order to compare our results with experiments. The one-l
perturbational contribution is
Et„f t~ l !,v~ l !,w~ l !…52
f t

2

96H 116F i
v2

w
ln v1

1

v12v2
S v2

2

v1
ln v22

v1
2

v2
ln v1D G

2
4

~v12v2!3 Fv1
3 2v2

3

3
1

3

2
~v12v2!~v1

2 ln v11v2
2 ln v2!2~v1

3 ln v12v2
3 ln v2!G

1
2

~v12v2!2 Fv1
3

v2
~114 lnv1!1

v2
3

v1
~114 lnv2!1S 1

v2
2

2

v12v2
D v1

4 ln v12v4 ln v

v2

1S 1

v1
1

2

v12v2
D v2

4 ln v22v4 ln v

v1
G J , ~5.3!
gth

ce

n

nd-
e
es
the

re.
es,
s
the

ity

Eq.
where we have dropped the argumentl in the parameters on
the right hand side of the equation. The parameters in
duced in Eq.~5.3! are defined as

v~ l !5
j22~ t !

~j0
21l !2

, w~ l ,v!5
v

2G~ l !~j0
21l !4

,

v6~ l ,v!5
v
2

6AS v
2D 2

1 iw. ~5.4!

The Onsager coefficientG( l ) and the mode couplingf t( l )
now read

G~ l !5G0X19f 0
2

24

l 0

l F11
l

l 0
S 24

19f 0
2 21D GC12xh

, ~5.5!

f t~ l !5
24

19F11
l

l 0
S 24

19f 0
2 21D G21

, ~5.6!

where G0 , f 0 , and l 0 are the initial values of the Onsage
coefficientG, the mode couplingf t , and the flow paramete
l , all determined att5t0 andDr50.

The mode coupling parameterl is a function of the tem-
peraturet, the densityDr and the frequencyv and results
from the solution of the matching condition@Eq. ~I.5.28!#,

S j0

j~ t,Dr! D
8

1S 2vj 0
4

G~ l ! D 2

5 l 8, ~5.7!
o-
which can be solved numerically as the correlation len
j(t,Dr) and the Onsager coefficientG( l ) are given by Eqs.
~A4! and Eq.~5.5!, respectively. The initial valuel 0 is found
from Eq. ~5.7! insertingj(t0) instead ofj(t,Dr).

Before we come to gravitational effects let us introdu

an effective temperature distancet̄ , which is a function of
the temperature distancet, the reduced densityDr, and the
frequencyv, and is determined by the matching conditio
via an effective correlation lengthjas( t̄ )5j0t2n:

j28~ t,Dr!1S 2vj 0
4

G~ t̄ !
D 2

5jas
28~ t̄ !. ~5.8!

The above equation allows the calculation of the correspo
ing effective temperature distancet̄ for each real temperatur
distancet at finite frequency and density at which the valu
of the model parameters have to be known. In Fig. 4
function t̄ (t), calculated by inversion of Eq.~5.8! at fixedv,
is shown for several frequencies along the critical isocho
Approaching the critical temperature at finite frequenci
the effective temperature distancet̄ becomes constant. Thu
all static and dynamic parameters that are functions of
flow parameter also turn into constant values atTc . A simi-
lar behavior oft̄ is found at zero frequency when the dens
differs from its critical value. With the solutiont̄ (t,Dr,v) of
Eq. ~5.8! the temperature and frequency parameters in
~5.4! can be rewritten as
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v~ t, t̄ !5
j22~ t !

j22@ t̄ #
, w~ t̄ !5

v

2G@ t̄ #j24@ t̄ #
. ~5.9!

The situation is a bit more complicated when gravitatio
effects are no longer neglected: Like before in the limit
vanishing frequency and on the critical isochore, we find
average shear viscosityh̄av(t,v) inserting the local values o
the frequency-dependent shear viscosity~5.1! at the bottom
and top into Eq.~4.1!. But now this means that we need th
flow parameterl not only as a function of the temperatur
the density, and the frequency, but also of the vertical p
tion z ~e.g., the bottom and top! in the vessel. So in order to
evaluate the frequency dependence at nonzero gravity
insert the correlation lengthj„t,Dr(z)… from the Appendix,
and the Onsager coefficientG( l ), into the matching condi-
tion ~5.8!, which now reads

S j0

j„t,Dr~z!…D
8

1S 2vj 0
4

G~ l ! D 2

5 l , ~5.10!

with the solution l „t,Dr(z),v… which we insert into Eq.
~5.1! to find the shear viscosityh̄b,t at the bottom and top
respectively. With gravitation we may define an effecti
temperature distancet̄ „t,Dr(z),v… analogously to Eq.~5.8!
at any positionz in the vessel.

In Fig. 5 and 6 we plot the sum of the real and imagina
parts of the shear viscosity at various frequencies with
without gravitation in3He. There we see that even in a ve
small vessel of 0.1 mm, gravity effects cover up all fr

FIG. 4. Effective temperature distanceteff vs real temperature
differencet for 3He for various frequencies at zero gravity along t
critical isochore.
l
f
e

i-

e

y
d

quency effects withv,1 kHz so that we can conclude tha
in earthbound experiments frequency effects will hardly
visible close to the critical point. Similar results for th
frequency-dependent shear viscosity in zero gravity were
ready obtained within the mode coupling theory@17#. Our
results for zero gravity but finite frequency agree with t
curves shown in Fig. 9 of Ref.@20# which were calculated
with the expressions derived in Ref.@17#. Unfortunately, ex-
perimental data are not available in a large enough freque
interval to compare them with our theoretical results, so t
we have to stick to the zero frequency case in Sec. VI.

VI. COMPARISON OF THE ZERO FREQUENCY
TRANSPORT COEFFICIENTS WITH EXPERIMENTS

Before we discuss the results of the comparison of
theory with experiments, we shall describe how to fit t
initial values of the Onsager coefficientG0 and the mode
coupling f 0 as well as the dynamic exponentxh from experi-
mental data for the shear viscosity and thermal diffusivi
Therefore, we have to discuss briefly the connection betw
our theoretical results and experimental data for these
quantities:

As discussed in Secs. II and III, the experimental tra
port coefficients consist of a singular part and a regular ba
ground part, both of them functions of the temperature a
density. As the temperature and density dependence of
background part is not described within the RG theory, o
has to correct the experimental data for this dependenc
order to extend the region of fit into the region where t
regular temperature and density dependence sets in. This
be done in the following way: From a fit of the shear visco
ity outside the critical region, one determines the regular p

FIG. 5. Shear viscosity in3He along the critical isochore a
various frequencies without gravitation.
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h̄ reg(t,Dr) of the shear viscosity andDT
reg(t,Dr) of the ther-

mal diffusivity. Then we subtract the regular parth̄ reg(t,Dr)
or DT

reg(t,Dr), respectively, from the experimental data, a
add the regular contributionh̄ reg(0,0) orDT

reg(0,0) exactly at
the critical point;

h̄corr~ t,Dr!5h̄expt~ t,Dr!2h̄ reg~ t,Dr!1h̄ reg~0,0!, ~6.1!

DT
corr~ t,Dr!5DT

expt~ t,Dr!2DT
reg~ t,Dr!1DT

reg~0,0!. ~6.2!

Now the corrected experimental data correspond to our
oretical expressionsh̄ andDT . In mode coupling theory the
procedure is somewhat different, since there the comp
background value of the transport coefficient is subtrac
which means, for the shear viscosity,

Dh̄~ t,Dr!5h̄expt~ t,Dr!2h̄ reg~ t,Dr!

5h̄corr~ t,Dr!2h̄ reg~0,0! ~6.3!

~see Fig. 5 in Ref.@3#!. A similar expression can be found fo
the thermal diffusivityDDT . Inserting the theoretical ex
pression forh̄corr(t,Dr) leads to a singular contributionDh̄
which is symmetric inDr. This arises from the constan
value ofh̄0 in expression~3.1!. Note that the mode coupling
theory uses the full background valueh̄ reg(t,Dr) instead of
h̄0 , so that their expressions are not fully symmetric inDr.

Let us now come back to the fit procedure: We start w
the shear viscosity along the critical isochore, and choost0
far away from the critical point whereh̄ is given by its
background value once that the experimental data were
rected corresponding to Eq.~6.1!. Theoreticallyt0 should go

FIG. 6. Average shear viscosity in3He along the critical isoch-
ore at various frequencies with gravitation~the height of the cell is
h50.1 mm).
e-

te
d,

r-

to infinity as only then the singular part completely vanish
Practically, however, the choice depends on the region wh
experimental data are available as well as on experime
uncertainties@21#. Oncet0 is chosen, we can calculateG0 as
a function off 0 inverting Eq.~2.6!. With the values oft0 and
G0( f 0) we can fit f 0 in the nonasymptotic region withxh
kept at its one-loop value119 . If possible it is better to move
on to the experimental data for the thermal diffusivity alo
the critical isochore for this fit off 0 , as the thermal diffu-
sivity depends only weakly on the exact value ofxh . With
G0( f 0) and the set of parameterst0 and f 0 , we return to the
data for the shear viscosity along the critical isochore a
finally fit the exponentxh in the asymptotic region. There
fore, it is advisable to use the expression for the aver
shear viscosity~4.1!, as gravitational effects will have a sig
nificant influence on the shape of the curve. The theoret
results for the shear viscosity or thermal diffusivity alon
other isochores or isotherms then follow without any oth
free parameter. We should note here that if only data for
shear viscosity along the critical isochore are available a
of both f 0 andxh is not unerring, ash̄ depends sensitively
on both parameters. Only if the saturation value of the sh
viscosity very close to the critical point is known from e
periments may we expressf 0 numerically in terms ofxh so
that we can perform a one parameter fit along the criti
isochore.

FIG. 7. Shear viscosity in3He ~top! and4He ~bottom! along the
critical isochore with gravitation~full curve: xh50.058; dotted
curve: xh50.063; dashed curve:xh50.063 andf 0 fitted from the
thermal diffusivity! and without gravitation~dash-dotted curve!.
Experimental data are from Ref.@20#.
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A. Comparison with 3He and 4He

In Figs. 7–10 we compare the shear viscosity and ther
diffusivity with experimental data in3He and4He. We start
with the normalized shear viscosityh̄/h̄0 along the critical
isochore, and compare our theoretical results with~full
curve! and without~dash-dotted curve! gravitation with the
3He and4He data of Agostaet al. @20# in Fig. 7, which can
be compared with Fig. 13 of Ref.@20# where the experimen
tal data are compared with the results of the mode coup
theory. Therefore, the parametersf 0 andxh were fitted from
the shear viscosity data, and for3He also from the therma
diffusivity data along the critical isochore as explain
above. This leads to a value of the critical exponentxh
50.058.

In Fig. 8 we continue with a comparison of our theory f
the renormalized shear viscosity along various isothe
with experimental3He data of Ref.@20#. A similar compari-
son of the3He data with the mode coupling theory is show
in Fig. 14 of Ref.@20#. Mind that the results for the densit
dependence, shown in Fig. 8, follow without any further fr
parameter. In Figs. 9 and 10 we compare the normali
thermal diffusivity DT /D0 along the critical isochore an
along two isotherms with experimental data of3He which we
obtained by dividing the thermal conductivity data of Figs
and 8 of Ref.@23# by rCp(t,Dr) taken from the cubic mode
@24# with background constants from@25#. These experimen
tal data are corrected for the regular density dependence
contain the full temperature-dependent background give
Ref. @23#. Therefore, to the theoretical result@Eq. ~3.2!# we
have to add the temperature-dependent background
DT

reg(T)2DT
reg(Tc). From Figs. 7–10 we can conclude tha

using the same set of constants for all figures, we find v

FIG. 8. Shear viscosity in3He along various isotherms. Fu
curves are forxh50.058, and dotted curves forxh50.063. Experi-
mental data are from Ref.@20#.
al
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good agreement in the critical region. In particular, we fi
the critical exponentxh50.058 somewhat larger than th
value used in Ref.@20#, xh50.054, within the mode cou
pling theoretical expressions for the shear viscosity ta
from Ref. @26#.

Another procedure is to consider only the shear visco
for a fixed value of the universal exponent. We choosexh
50.063, the value taken in mode coupling theory@3# for the
fluids analyzed in Sec. VI B. Then another background va
for the mode coupling constantf 0 is obtained together with
perfect agreement of the shear viscosity with the experim
tal data ~the difference from the fit found above is hard
visible in Fig. 7!. However, differences are seen in the pr
diction of the density dependence of the shear visco
along the isotherms shown in Fig. 8~dotted curves! and in
the thermal diffusivity along the critical isochore~see Fig. 9,
dotted and dash-dotted curve!, as well as in the density de
pendence of the thermal diffusivity~see Fig. 10, dotted
curves!. If instead we use the temperature-dependent ther
conductivity at a critical density to fixf 0 , and then apply the
valuexh50.063 for the critical exponent in the shear visco
ity, the theoretical shear viscosity deviates clearly from
the experimental data~see Fig. 7, dashed curve!.

The situation in4He is somewhat different from3He,
since, lacking sufficient thermal conductivity data, we had
find the nonuniversal parameters from the shear visco
alone. Therefore, we fixed the dynamical exponentxh to the
values found or fixed for3He, and adjusted only the initia
value for the mode couplingf 0 after choosing the appropri
ate t0 ~the parameters found are listed in Table III!. As ex-

FIG. 9. Thermal diffusivity in3He along the critical isochore fo
xh50.058 and 0.063 with gravitation~full and dotted curve! and
without ~dashed and dash-dotted curve!. Experimental data are ob
tained from Ref.@23# as explained in the text.
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788 PRE 60G. FLOSSMANN, R. FOLK, AND G. MOSER
pected no conclusion on theprecise value of xh can be
drawn. We finally remark here that the experimental sh
viscosity data were divided by the full backgroun
h̄ reg(t,Dr), whereas our theoretical expressions are divid
by h̄0 . Since in 3He and 4He the background is a rathe
smooth function this systematic error is negligible in the
gions of temperatures and densities shown.

B. Comparison with C2H6 and CO2

In Figs. 11–14 we finally compare our theoretical resu
with the mode coupling theory@3# and experimental data o
CO2 @27–29# and C2H6 @27,30# along various isotherms. W
take the same valuexh50.063 for the critical exponent tha
has been used in mode coupling theory~smaller values
showed less overall agreement with the data in our fits!, for
the other parameters see Table III. In Figs. 11 and 13
singular partDh of the experimental data is plotted, which
identified with its theoretical counterpart

FIG. 10. Thermal diffusivity in3He along two isotherms. Ful
curves are forxh50.058, and dotted curves forxh50.063. Experi-
mental data are from Ref.@23#.

TABLE III. Initial values of the Onsager coefficientG0 and the
mode couplingf 0 at t0 and value of the critical exponentxh . For
3He and4He, G0 and f 0 are given forxh50.058 and 0.063.

Liquid t0 G031018(cm4/s) f 0 xh

3He 0.014 2.69 0.565 0.058
4He 0.050 0.80 0.508 0.058
3He 0.014 3.18 0.520 0.063
4He 0.050 1.00 0.456 0.063

C2H6 0.100 6.20 0.576 0.063
CO2 1.000 2.69 0.251 0.063
r

d

-

s

e

Dh theor~ t,Dr!5h0@gh~ t,Dr!21#, ~6.4!

which is symmetrical aroundrc , and indeed the experimen
tal data show almost the same symmetry. We see that for
shear viscosity, mode coupling theory and RG theory yi
the same quality of agreement in a surprisingly large reg
of densities.

For the thermal diffusivity, however, we are only able
describe the experimental data correctly within a density
temperature interval ofuDru,0.2 and utu,0.01, respec-
tively, whereas the mode coupling theory covers a lar
density and temperature range. The reason might be the
lowing: Since we compare with the full experimental val
of the thermal diffusionDT but only the background value
of the thermal conductivity are known, we need the spec
heat at a constant pressure, which we take from the cu
model @24# with background constants from Ref.@31#. Then
the experimental thermal diffusion is calculated from

DT
theor~ t,Dr!5DT

corr~ t,Dr!1
k reg~ t,Dr!

rCp~ t,Dr!
2

k reg~0,0!

rCp~ t,Dr!
.

~6.5!

The specific heat expression we use is restricted to not
large values oft and Dr. Moreover, we use the asymptot
expression for the correlation length, which also brea
down in the background and leads to values of the ther
conductivity which are higher than the expected values~see,
e.g., Fig. 8 in Ref.@2# for the deviation in3He). In fact the

FIG. 11. Shear viscosity in C2H6 along various isotherms. The
plot contains our results~thick curves! as well as experimental dat
@27# and theoretical results of the mode coupling theory~thin
dashed curves! @3#. The curves were shifted by 5, 10, or 15mP,
respectively, for better clearness.
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PRE 60 789FREQUENCY-DEPENDENT SHEAR . . . . III. . . .
correlation length is expected to saturate at some mi
scopic background value leading to temperature indepen
background values for the dynamic parameters@see Eqs.
~2.3! and ~2.4!#. In the mode coupling calculations this
taken into account relating the correlation length to the s
ceptibility @see Eqs.~4.31! and ~4.32! in Ref. @3##.

VII. CONCLUSION

We have derived expressions for transport coefficie
such as the shear viscosity and the thermal diffusivity wit
the field-theoretical method of the RG theory in one-lo
order including the complex expression for the shear visc
ity at finite frequency. As the flow parameter is a function
the correlation length only, we can include gravitational
fects in full analogy to statics, so that we are able to desc
the shear viscosity completely with only two free paramete
namely, the initial values of the Onsager coefficient and
mode coupling. In addition we may treat the exponentxh ,
which is given byh1xh518/19;0.053 in one-loop order
as an additional parameter correcting our one-loop cross
function for G(t) for the true asymptotic behavior in th
solution of the flow equation~2.4!. Note that we effectively
use the scaling lawh1xh1xl51, with h50, when we in-
sertG(t) into the thermal conductivity. However, this proc
dure keeps the theoretical expression for the Kawasaki
plitude and its asymptotic one-loop valueR* 51.056.

Fitting the exponentxh from experiments for3He we ob-
tain the value 0.058 which is lower than other experimen

FIG. 12. Thermal diffusivity in C2H6 along various isotherms
The plot contains our results~thick curves! as well as experimenta
data@30# and theoretical results of the mode coupling theory~thin
curves! @3#. We have used the analytic background expression
Ref. @36#.
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values which are more near the two loop valuexh50.065
@11# or even higher@14,15# but in good agreement with othe
experimental fits in3He and4He @20#. In this paper we have
pointed out that the value of the exponentxh can be deter-
mined from the saturation value of the shear viscosity
actly at the critical point under the influence of gravitatio
when the parameterf 0 is taken from a fit of either the ther
mal diffusivity or that part of the data not influenced b
gravity. Note added in proof: Recently the shear viscosity
xenon has been measured in a low gravity experiment@38#.
The divergence is characterized by a critical exponentxh
50.06960.0006, which was found from fits within the re
gion 1026,t,1024. This result favors the two loop valu
for the exponent of the shear viscosity mentioned in@12#.
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APPENDIX: CUBIC MODEL

The cubic model@32#, an extension of the linear mode
introduced by Schofield@33#, is an equation of state close t
the critical point involving nonclassical critical exponent
The reduced temperaturet, the reduced densityDr, and the

of

FIG. 13. Shear viscosity in CO2 along various isotherms. The
plot contains our results~thick curves! as well as experimental dat
@27# and theoretical results of the mode coupling theory~thin
curves! @3#.
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reduced chemical potentialDm are expressed in terms of ne
variablesr andu,

t5
T2Tc

Tc
5~12b2u2!r , ~A1!

Dr5
r2rc

rc
5k~u1cu3!r b, ~A2!

Dm5
m2m0~T!

Pc /rc
5a~u2u3!r bd, ~A3!

wherem0(T) is the chemical potential along the critical is
chore, which is assumed to be an analytic function of
temperature. The correlation lengthj is now given by the
heuristic expression@24,34#

j5j0~110.16u2!r 2n5j0t2n~110.16u2!~12b2u2!n.
~A4!

Hence Eqs.~A1! and ~A2! can be inverted numerically to
obtain the correlation length as a function of the reduc
temperature and the reduced density. We use the restr
cubic model@32# where the parametersb253/(322b) and
c5(2bd23)/(322b) are connected to the universal crit
cal exponents of Table II, so that the nonuniversality ent
Eqs.~A1!–~A4! only via the constant parametersa, k andj0
given in Table I.

FIG. 14. Thermal diffusivity in CO2 along various isotherms
The plot contains our results~thick curves! as well as experimenta
data @28,29# and theoretical results of the mode coupling theo
~thin curves! @3#. We have used the analytic background expr
sions of Ref.@3# for the density dependence, and of Ref.@37# for the
temperature dependence.
e

d
ted

rs

The treatment of gravitational effects is in full analogy
statics, where it has been performed in detail by Hohenb
and Barmatz@35# within the linear model, and the extensio
in terms of the cubic model is straightforward so that w
only mention the most important steps: Gravity enters
equation of state in terms of the chemical potential,

dm52gdẑ, ~A5!

whereg is the gravitational constant andẑ the vertical coor-
dinate in the vessel. Introducing the dimensionless vert
coordinatez5 ẑ/h, whereh is the height of the vessel, an
choosing the origin ofz along the coexistence line, we ma
integrate Eq.~A5! to obtain

Dm52ghz. ~A6!

Inserting Eq.~A3! for the reduced chemical potential, E
~A6! may be inverted to obtain

z52g1~u2u3!r bd52g1tbd~u2u3!~12b2u2!2bd,
~A7!

where g15(aPc)/(rcgh)5hc /h involves the constan
‘‘critical height’’ hc also given in Table I. Since we hav
chosen the origin ofz along the coexistence line, the pha
transition always occurs atz50 in our model, whereas the
coordinates of the bottom and the top are functions of
temperature and the average density given by

Dr5E
z1

z2
Dr~ t,z!dz5E

u1

u2
Dr~ t,u!S dz

du D
t

du. ~A8!

Herez1 andz25z111 are the coordinates of the bottom an
top of the vessel~in our units the height of the vessel
unity!, andu1 andu2 the corresponding values of the cub
model variableu, which can be found from Eq.~A7!. Equa-
tion ~A8! may then be inverted numerically to obtainu1 and
u2 as a function of the reduced temperature and the ave
reduced density. Along the critical isochore, however,
situation becomes much easier as the coordinates of the
tom and top are then always given byz1,2571/2 which we
simply insert into Eq.~A7! to obtainu1 andu2 . Onceu1 and
u2 have been found we can insert these values into Eq.~A2!
and Eq.~A4! to obtain the reduced density and the corre
tion length at the bottom@Drb(t,Dr)5Dr(t,u1), jb(t,Dr)
5j(t,u1)# and at the top@Dr t(t,Dr)5Dr(t,u2), j t(t,Dr)
5j(t,u2)# of the vessel which we need for Eq.~4.1!. The
integral for the average thermal diffusivity~4.2! can now be
written as

DTav
~ t,Dr!5E

z1

z2
DT@j„t,Dr~z!…#dz

5E
u1

u2
DT„j~ t,u!…S ]z

]u D
t

du, ~A9!

and may easily be integrated. To end this section let us n
that we need an analytic expression for the specific hea
constant pressureCP(t,Dr) in terms of the cubic model in
order to evaluate the thermal conductivitykT(t,Dr)
5rCPDT(t,Dr). Such an expression can be found, e.g.,
Ref. @24#, and the background constants entering the
equations are taken from Ref.@25# for 3He and from Ref.
@31# for CO2 and C2H6.
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